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ABSTRACT

Data indicate that the accelerations caused by gusts and maneuvers

are comparable to corresponding accelerations experienced by past piston-

engine transports. Placard speeds were exceeded more frequently in the

operation of the Electra airplane than in operations involving piston

transports. Landing accelerations appear to be somewhat higher than the
accelerations for past operations.
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Data obtained by NASA VGH and V-G recorders on several Lockheed

Electra airplanes operated over three domestic routes have been analyzed

to determine the in-fllght accelerations, airspeed practices, and landing

accelerations experienced by this particular airplane. The results indi-

cate that the accelerations caused by gusts and maneuvers are comparable

to corresponding results for plston-englne transport airplanes. Oscil-

latory accelerations (apparently caused by the autopilot or control sys-

tem) appear to occur about one-tenth as frequently as accelerations due

to gusts. Airspeed operating practices in rough air generally follow the

trends shown by plston-englne transports in that there is no significant

difference between the average airspeed in rough or smooth air. Placard

speeds were exceeded more frequently by the Electra airplane than by

piston-engine transport airplane s. Generally, the landing-lmpact accel-

erations were higher than those for piston-engine transports.

INTRODUCTION

The National Aeronautics and Space Administration has for a number

of years collected data on the accelerations or loads experienced, the

airspeed practices, and the operating altitudes of transport airplanes

during routine airline operations. These data have provided a means of

assessing the adequacy of the concepts and criteria used in design of

the airplanes and, also, furnished a body of information for use in

establishing design requirements for future airplanes. Reference 1

summarizes operational data collected on a number of piston-engine air_
planes and reference 2 presents results for a turbine-powered airplane.

As part of the continuing data collection program, V'G and VGH

records on several Lockheed Electra airplanes have been collected during
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operations on three airlines since 1959. As the evaluation of these

records progressed, the data obtained have been made available to the

manufacturer and to government organizations for use in investigations
of the airplane. In this report the V-G and VGH data available to date

from these airplanes are summarized. These data pertain to the airspeed

operating practices, operating altitudes, gust and maneuver accelera-

tionsj airplane- or autopilot-lnduced oscillatory accelerations, landing-
impact accelerations, vertical velocity at landing, and the gust veloc-

ities encountered.

SYMBOLS

W

S

A

b

g

vN0

VNE

Ude

Kg

Po

Ve

_g

Vmax

design gross weight of airplane, Ib

wing area, sq ft

aspect ratio

wing span, ft

mean geometric chord, ft

acceleration due to gravity, ft/sec 2

placard normal operating speed, knots

placard never- exceed speed, knots

derived gust velocity, ft/see

normal acceleration, g units

gust factor

air density at sea level, slugs/cu ft

equivalent airspeed, ft/sec

Mach number

mass ratio of airplane

maximum indicated airspeed, knots



MNO

m

normal operating Mach number

never-exceed Mach number

slope of lift curve per radian

INSTRUMENTATION AND AIRPLANE

The data were obtained from NASA VGH and V-G recorders which are

described in references 5 and 4, respectively. The VGH recorder yields

a time-history record of indicated airspeed, pressure altitude, and nor-

mal acceleration as shown by the typical record in figure 1. The accel-

erometers were mounted on the center llne of the airplane at fuselage

station 559 and water llne station 89. This location is approximately

3 feet forward of the center of gravity. The recorder base was installed

in the radio equipment area. Pressures for the airspeed and altitude

recordings were obtained from the copilot pitot line and the autopilot

static line. The V-G recorder yields an envelope-type record of the

maximum accelerations experienced at various indicated airspeeds. A

typical V-G record is shown in figure 1. This recorder was mounted on

the center llne of the airplaneat fuselage station 565 and water line

station lll and, thus, was about 2½ feet forward of the center of gravity.

Recorded airspeeds were obtained from the copilots' pitot tube and the
alternate static tube.

Some of the characteristics of the airplane that are pertinent to

the evaluation of the data are given in the following table:

Design gross weight, W, lb .................. ll3,0OO

Wing area, S, sq ft ..................... 1,300

Aspect ratio, A ....................... 7.5

Span, b, ft ..................... 99
Mean geometric chord, _] ft ................. 15.25

The operational placard speeds for which the airplane was originally

certificated are shown by the solid curves in figure 2. Reduced speed

placards were placed on the airplane on March 27, 1960, and these placards

are shown by the dashed curves in the figure.

SCOPE OF DATA

VGH data were available from six airplanes operated on domestic

routes by three airlines, hereafter referred to as airlines A, B, and C.



The general routes from which the data were collected are Shownin fig-
ure 3, and the distribution of the VGHrecord hours by year and month is
given in figure 4. As shownin figure 4, the data cover operations prior
to the restrictions being placed on the airplane on March 27, 1960. Addi-
tional data have been collected subsequent to this data, but only lim-
ited reference to the later data will be made.

The sizes of the VGHdata samples from each airline are summarized
in table I in terms of the total numberof flight hours that were avail-
able for evaluation. As shownin the table, the overall data sample
sizes were approximately 1,164 hours for airline A, 893 hours for air-
line B, and 192 hours for airline C. Becauseof the relatively small
amountof data from airline C, only limited results from this data sample

will be presented. Inasmuch as the total record samples from airlines A

and B either were not required in certain phases of the analysis or

because record evaluation for some phases has not been completed, the

results to be presented were not in all cases based on the total sample

sizes available. In order to indicate the actual sample sizes used,

therefore, table I gives the number of flight hours or number of flights

from which the results were obtained.

The V-G data sample collected from four airplanes operated by air-

line A consisted of eight V-G records representing an estimated 1,711 flight

hours between September 1999 and March 1960.

EVALUATION OF RECORDS

VGH Records

The VGH records were evaluated to obtain information on the gust

and maneuver accelerations, airplane- or autopilot-induced oscillatory

accelerations, landlng-impact accelerations, airspeed operating practices,

and the operational altitudes. For this purpose, each flight on the

VGH record was classified as being either a routine passenger-carrying

operational flight, or a check flight for pilot training or airplane

testing.

The operational flights were divided into three segments; climb,

cruise, and descent, as illustrated in figure 1. The climb condition

covered the time from take-off until the airplane began to maintain

level flight consistently; the cruise covered the essentially constant

altitude portion of the flight; and the descent, the portion of flight

from the end of cruise until the airplane landed. Both the climb and

descent flight conditionsoccaslonally included short periods when the

airplane was in level flight while holding altitude as a result of



operational or air traffic control procedures. Also, the cruise condi-
tion occasionally included periods when the airplane was Climbing or
descending to a different cruise altitude.

Accelerations

The accelerations on each operational flight were classed as
resulting from either gusts or maneuverson the basis of the criteria
described in referenceS. The peak values of each gust acceleration
greater than ±0.2g and of each maneuveracceleration greater than ±0.1g
were read by using the 1 g steady-flight position of the acceleration
trace as the reference. For each gust acceleration, the corresponding
simultaneous values of airspeed and altitude were also evaluated.

The check flights were evaluated only for maneuveraccelerations
which were read to a threshold of ±O.lg.

The initial landing-lmpact accelerations experienced during
operational and check flightswere read and tabulated in O.lg class
intervals. These accelerations were identified on the records by the
impulse-like characteristics of the trace at the instant of landing
impact. The probability distributions of landing-impact accelerations
were used to estimate the probability distribution of vertical velocities
at landing. A value of 0.208 feet per second per g was used for con-
verting accelerations to vertical velocities and was obtained from the
empirically derived relationship based on airplane empty weight given in
reference 6.

The VGHrecords collected prior to March 1960 contained oscillatory
motions as evidenced by deflections of the acceleration trace and, to a
lesser extent, by the airspeed and altitude traces. For the most part,
the accelerations associated with these oscillations were relatively
constant in amplitude (generally ±0.3g) and frequency (about 6 to lO cycles
per minute) during any particular occurrence (fig. 5(a)). Occasionally,
however, the oscillations tended to becomeconvergent (fig. 5(b)) or
divergent (fig. 5(c)). The oscillatory acceleration peaks were not
individually read but, rather, an estimate of the distribution of these
accelerations was obtained from measurementsof the average peak ampli-
tude, frequency, and time duration of each continuous occurrence of
oscillations greater than ±0.06g. In addition, the airspeed and altitude
associated with each oscillatory occurrence was read.

Airspeeds and Altitudes

Distributions of airspeed and altitude for the operational flights
were obtained by reading the indicated airspeed and pressure altitude



for each 1-minute period of flight. The airspeed data were sorted
according to whether the airplane was in rough or smooth air. For this
purpose, the airplane was assumedto be in rough air whenever gust accel-
erations greater than about +0.1g were experienced. This procedure is
consistent with that followed in past analyses of VGH-type data. (See

ref. 2, for example.)

In addition to the evaluation of airspeeds at 1-minute intervals,

a more detailed evaluation was made of the occurrence of speeds in excess

of the placard speeds. This evaluation consisted of determining the

maximum speed and the altitude associated with each exceedence of the

placard speed VN0 (or MN0 ). (See fig. 2. ) Also, the time flown at

speeds higher than VN0 (or MN0 ) was evaluated.

Gust Velocities

Gust accelerations and the corresponding altitudes and airspeeds

were used to calculate gust velocities by means of the derived gust

velocity equation described in reference 7:

Ude =

Kg0oVemS

where

Ude

W

Kg

Do

Ve

m

S

airplane and therefore varies with altitude and lift-curve slope.

derived gust velocity, ft/sec

airplane weight, lb

normal acceleration, g _i-ts (corresponds to 2m used

in ref. 7)

gust factor

air density at sea level, slugs/cu ft

equivalent airspeed, ft/sec

lift-curve slope per radian

wing area, sq ft

The gust factor Kg is a function of the mass ratio _g of the
The
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values of Kg were therefore computed for the midpoint of each

5,000-foot-altitude increment for five values of the lift-curve slope

between M = 0 and M = 0.7. These Kg values varied from 0.737 for

M = 0.65 at 2,500 feet to 0.823 for M = 0.15 at 22,500 feet for

operator A, and from 0.726 for M = 0.65 at 2,500 feet to 0.817 for

M = O. 15 at 22,500 feet for operator B. An average operating weight

of lO1, 350 pounds for operator A, 92,000 pounds for operator B, and

95,000 pounds for operator C was used in calculating the gust velocities.

These values for the average operating weights were obtained from the

airlines. The variation of the lift-curve slope with Mach number was

obtained from the manufacturer and is given in figure 6.

V-G Records

The values read from each V-G record were the maximum positive and

negative accelerations an,max, the airspeeds at which the maximum

accelerations occurred, and the maximum indicated airspeed Vmax-

Accelerations which occurred at low speeds (below 130) knots were not

read in order to exclude the effects of maneuvers during take-off and

approach and impact shocks during landing.

Maximum derived gust velocities were computed for each record by

use of the revised gust-load formula. (See ref. 7.) The values of the

gust factor Kg used for evaluating the gust velocities for the V-G data

were based on the average operating altitude as determined from VGH data

and on the average operating weights as furnished by the operator.

Reliability of Results

The three possible sources of error in the data arise from instru-

ment, installation, and reading errors. The errors inherent in the

instruments and those due to installation are discussed in references 3

and 4. Record reading errors are discussed in references 5 and 8. The

most pertinent considerations to the reliability of the data presented

are given in the following paragraphs.

The VGH installations met the installation requirements given in

reference 3_ therefore, the installation errors for the present data are

thought to be negligible. The estimated maximum instrument errors in

the VGH data for each of the measured quantities are:

Acceleration, g units ..................... ±0.05

Indicated airspeed, knots:

At lO0 knots ....................... ±5

At 300 knots ........................ ±5
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Pressure altitude, ft:

At 2,000 ft .......................... +i_0

At 20,000 ft ......................... +300

From laboratory calibrations of the V-G recorder (ref. _) the instrument

errors are less than +0. lg for acceleration and about 1 percent of the

full range of airspeed covered by the recorder.

Random errors that may have occurred in reading the V-G records

are believed to have a negligible effect on the V-G data. Errors in

reading the VGH records, although estimated to be small (of the order of

0.05g) can affect the estimated number of accelerations exceeding given

values. Experimental checks have indicated that for individual records

the counts above O. Sg are only reliable to about ±30 percent. Inasmuch

as the reading errors tend to balance out as the sample size increases,

the values for the cumulative frequency per mile for the overall dis-

tribution of maneuver and gust accelerations and gust velocity are esti-

mated to be accurate within ±20 percent. The accuracy of the distribu-

tion by flight condition and altitude bracket, however, is somewhat less

inasmuch as the individual data samples are smaller.

In regard to the statistical reliability (that is, applicability to

extended periods of operations) of the results, it should be noted that

the data samples are limited in two primary aspects. First, the VGH data

sample from each airline is smaller than the 1, O00 hours usually considered

as being adequate. Secondly, none of the samples cover a full year's

operation and thus may not be completely representative of overall

operations. The data sample for airline C is especially limited in both

aspects; thus, the results for this sample should be used with reserva-

tion. The results for airlines A and B are, in spite of the sample

limitations, believed to be fairly representative of these two operations.

RESULTS AND DISCUSSION

Description of Operations

As shown in figure 5, the airplanes were operated by the three

airlines on routes which gave a wide geographical coverage of the

United States. As an illustration of these operations, figure 7 gives

altitude and airspeed profiles for a typical operational flight. The

distribution of flight times for the operational flights is shown in

figure 8 for each of the three operations.

Table II summarizes the average flight times and the average flight

miles associated with the climb, cruise, and descent flight conditions

and for the overall flight. As indicated in the table, the average
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flight lengths were approximately _50 miles and the average flight times
were about 1.7 hours.

Table III gives a breakdown of the total flight time into the per-

centage of _time flown within each _,O00-footTaltitude bracket and in the

climb, cruise, and descent flight conditions. Although the airplanes

were operated at altitudes up to 2_,000 feet, the average cruise altitudes
ranged from 17, 317 feet for airline A to 17,133 feet for airline C.

Approximately lO percent of the flight time was spent in the climb,

6_ percent in cruise, and 2_ percent in descent.

Ac ce le rat ion s

Operational maneuvers.- The frequency distributions of the opera-

tional maneuver accelerations are summarized in table IV by flight con-

dition and for the total data sample for airlines A and B. The maneuver

accelerations experienced in the different operations are compared in

figure 9 in terms of the average frequency of occurrence per mile of

flight. For comparison, the limits of the maneuver distributions given

in reference 1 for several four-engine piston airplanes are also given

in the figure. The results show that the operational maneuvers experi-

enced in operations A and B are similar as regards magnitude and frequency

of occurrence. Also, the maneuver experiences for the operations are in

fair agreement with the results for past piston-engine operation.

Examination of table IV shows that, for each operation, most of the

operational maneuvers (> ±O. lg) occurred during the descent and the least

number during climb. The maneuver frequency distributions from table IV

are plotted in figure lO in terms of the average frequency of occurrence

per mile of flight for each flight condition. The figure shows that, in

general, the frequency per mile is higher for the climb and descent con-

ditions than for the cruise condition. This result is due to altitude

and heading changes being required more frequently during the climb and

descent than during cruise.

Check-flight maneuvers.- The time spent in check flights was about

3 percent of the total flight time for airline A and about two percent

for airline B. These percentages for the time spent in check flights

are in good agreement with the results given in reference 1 for a number

of piston-engine airplanes and in reference 2 for a turblne-powered

airplane.

The accelerations experienced during the check flights are shown

in figure ll in terms of the average frequency of occurrence of accel-

erations greater than given positive or negative values. These results

are based on the total flight miles (operational and check flights) for
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each data sample. For comparison, the range of corresponding results
for four-engine piston airplanes (ref. l) are indicated in the figure.

The results in figure ll showthat positive accelerations of given
values were ex_p_eriencedwith about the samefrequency in the two opera-
tions. For both airlines the positive accelerations are within the
limits of the piston-englne results. The negative accelerations for
airline A appear to have occurred more frequently and to have reached
larger values than those experienced by airline Band lie near the upper
limit for the piston-engine airplanes. The difference between the negative
accelerations for airlines A and B maybedue to differences in check-
flight procedures for the two airlines or to sampling errors associated
with the relatively small data samples.

Gust accelerations.- The frequency distributions of the gust accel-

erations are given in table V by flight condition and for the total

VGH data sample from each airline. For each operation, the table shows

that the largest number of accelerations was experienced during descent

and the least number during climb. In terms of the average frequency of

occurrence per mile of flight, figure 12 shows that gust accelerations

were experienced roughly five times more frequently during climb and

descent than duringcruise. This result is primarily a reflection of

the time spent in climbing and descending through the lower altitudes

where the turbulence is more frequent than at the higher altitudes as

will be discussed in a later section.

The average frequency of occurrence of gust accelerations during

operations in each 5,000-foot-altitude interval is given in figure 13.

In general, the gust-acceleration frequencies show a decrease with

increasing altitude. This result is also primarily due to the increased

turbulence levels at the lower altitudes.

The average gust acceleration frequencies based on the total VGH data

sample for each operation are shown in figure 14. For comparisonj the

limits of corresponding results for four-englne piston airplanes (ref. i)

are also shown on the figure. These results show that slightly larger

accelerations were experienced by airline A than by airlines B or C.

From the overall viewpoint the present results show little difference in

the gust acceleration experience for the three operations at the lower

acceleration values (an _ 0.6g). Although differences are evident in

the frequency of occurrence of the larger accelerations, it is thought

that these differences may be due to sampling variability. The gust

acceleration histories for the present airplane type fall in the upper

half of the range of the acceleration histories for the piston-englne

airplanes.
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The gust acceleration data from the V-G and VGHdata for airline A
are plotted in figure 15 in terms of the cumulative frequency of occur-
rence of acceleration per mile of flight. As noted in reference 8 the
synthesis of V-G and VGHdata provides a meansof estimating the overall
a¢celeratlon history for an operation. Figure 15 showsthat the V-G
and VGHdata are from, the overall viewpoint, in relatively good agree-
ment at the higher acceleration values. (The departure of the V-G data
from the VGHdata at lower acceleration levels is normal and is due to
the fact that only maximumaccelerations, rather than complete frequency
counts, are obtained from the V-G records. ) Although the results from
the V-G data tend to substantiate the high acceleration values from the
VGHdata, they do not extend the VGHresults nor provide a good basis
for extrapolation to higher accelerations. In this case, the V-G data
sample (1,711 hours) appears to be too small to add appreciably to the
VGHdata.

Oscillatory accelerations.- In addition to maneuver and gust accel-

erations, an oscillatory type of acceleration was frequently experienced

in flight as was previously mentioned. This acceleration, which is

denoted oscillatory acceleration because of its behavior, was character-

ized by essentially symmetrical variations of the accelerometer trace

about the normal 1 g level-flight position. In general, the accelera-

tions had a period of about 6 seconds, were relatively constant in

amplitude for a given occurrence, and varied in length from less than

half a minute to more than an hour. (See fig. 5(a). ) Occasionally,

instances occurred in which the oscillations, lasting for perhaps half

a minute, either converged or diverged and contained peak accelerations

as high as ±0.8g. (See figs. 5(b) and 5(0). ) Oscillatory accelerations

of the type shown in figure 5 have been recorded on each of the six air-

planes from which VGH records have been received.

The average number of oscillatory acceleration occurrences per hour

of flight experienced during the period of operation analyzed is shown

in figure 16 for one airplane operated by airline A and two by airline B.

The results show that the number of occurrences or "patches" of oscil-

latory accelerations ranged from about 0.1 to 0.7 per hour of flight.

There does not appear to be any significant difference among the fre-

quency of occurrence of the oscillations on the three airplanes. Also,

no particular trend is apparent in the number of occurrences with time.

Figure 17 shows that the maximum amplitudes of the oscillatory

accelerations for the records evaluated ranged from about +0.1g to ±0.5g.

There does not appear to be any significant difference between the max-

imum amplitudes for the three airplanes nor any particular trend in the

amplitudes with time. It should be mentioned that convergent or diver-

gent oscillations (figs. 5(b) and 5(c)) on records which were not included

in the evaluations have attained peak accelerations as high as +0.8g.
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The estimated cumulative frequency per mile of oscillatory accel-

erations for airlines A and B are compared in figure 18. For this com-

parison, the _number of peak accelerations was estimated by multiplying

the average number of peaks per minute by the total time that oscilla-

tions of a given magnitude _were present. Although this procedure gives

a satisfactory estimate of the frequency of the low (less than about O. 3g)

amplitude accelerations, it does not give a good estimate of the higher

accelerations L. The results indlca_e that the frequency of occurrence

and ampiitude of the oscillatory acceleratlons experienced by the air-

planes flown by the two operators were about equal.

The Joint distribution of the indicated airspeeds and pressure

altitudes at which the oscillatory accelerations occurred is given in

table VI. The results in table V_ show that most of the oscillations

occurred at speeds above about 220knots and at altitudes above

12,000 feet. The distribution of t_e occurren_es with altitude was

found tO be about the same as the distribution of cruise flight time

at the various altitudes. Likewise, the distribution of the occurrences

with airspeed closely agrees with the distribution of cruise airspeeds.

Further, the line shown in tabie VI corresponding to the average cruise

Mach number of 0.54 fits the Joint airspeed - altitude distribution very

well. Inasmuch as about 94 peTcent of the oscillatory accelerations

occurred during cruise, the results in table VI indicate that the accel-

eratlons are not associated with any particular airspeed-altitude combi-

nation but, rather, occur randomly during cruise flight.

Oscillations of the type shown in figure 5 and which have been

discussed in the preceding paragraphs have not been present on VGH records

collected after March 27, 1960, when the 225-knot speed placard _as

placed on the airplanes and _he autopilots were disconnected. However,
oscillations with somewhat different characteristics occasionally are

present on the records obtained after the placard. As shown in fig-

ure 19(a), these oscillations have a period of about 6 seconds and are

generally less than ±0.25g. These oscillations have been recorded on

each of the six airplanes. They have occurred in climb, cruise, and

descent and, in some instances, appear to be initiated by light turbulence.

Although the oscillations detected after March 27, 1960 are generally

of low amplitude and occur infrequently, there are some indications that

they may amplify the airplane's response to rough air. For example, fig-

ure 19(b) shows a section of a VGH record taken in moderate turbulence.
Examination of the acceleration trace suggests that the 6-second-period

oscillation constitutes a predominate part of the total response to the

rough air. Thus these oscillations are of sufficient importance to

warrant investigation into their underlying cause.

Compa_._son of accelerations.- The accelerations caused by opera-

tional maneuvers, check-flight maneuvers, gusts and oscillatory motions

l
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are compared in figure 20 in terms of the cumulative frequency per mile.

For this comparison, the positive and negative accelerations for the

check-flight maneuvers (fig. ll) have been combined without regard to

sign. For each airline, gust accelerations are on the order of lO times

as frequent as accelerations from the other sources and, therefore, are

the predominant source of accelerations.

Turbulence

Amount of rough air.- The percent of the flight distance which was

flown in rough air is given in figure 21 by 5,000-foot-altitude intervals.

For comparison, the curve given in reference 9 for the variation of the

amount of rough air with altitude is also shown in figure 21. The results

for the present operations indicate that the percentage of time spent in

rough air decreased from roughly 30percent at low altitude (0 to

_3000 feet) to about 8 percent at 15,000 feet. Above this altitude, the

results indicate a small increase in the amount of rough air. In com-

parison with the results from reference 9, the present results show a

larger percent of rough air throughout the altitude range covered. The

present results and those of reference 9 are in general agreement, how-

ever, in regard to the trend of the variation of turbulence with altitude.

Gust velocities.- The overall distribution of gust velocities eval-

uated from the VGH records are shown in figure 22 in terms of the cumula-

tive frequency of occurrence per mile of flight for the three operations.

Comparison of the present operations with corresponding results from

four-engine piston airplane (ref. l) indicates general agreement_ however,

results from airline A are slightly higher. Comparison Of the results

for the present _hree operations indicates that gusts of given values

were encountered several times more frequently by airline A than by the

other two airlines. Such differences in gust experience for a particular

type of airplane in operation on several routes are not unusual, however_

and are apparently due to differences in the actual amount and intensity

of turbulence present over the routes and to differences in operational

practices as regards turbulence avoidance.

Figure 23 shows the average number of gusts encountered per mile

of flight within each 5,000-foot-altitude interval for airlines A and B.

In general, the results for each airline indicate significant decreases

in the gust frequency with increasing altitude and, thus, are in overall

agreement with previous results. (See refs. 1 and 9, for example.)

Some deviation from the general pattern of decreasing gust frequency

with increasing altitude is however evident in the present results inas-

much as the gust frequency for the altitude interval of 20,000 to

2_,000 feet is higher than for altitudes of 15,000 to 20,000 feet.

Whether this indication is real or results from sampling variability is
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not known at present. Similar indications, however, have been noted in

other analyses of airline data. (See ref. 1. )

The distribution of gust velocities from V-G data from airline A

is shown in figure 24 together with the VGH gust velocity data for the

airline from figure 22. The results in figure 24 show that the two sets

of data are not in good agreement and that the V-G data indicate a lower

gust frequency than the VGH data. This lack of agreement is thought to

be due in part to the relatively small V-G data sample available

(1,711 hours) as was discussed in a previous section.

Airspeeds.- The average indicated airspeeds for the climb, cruise,

and descent flight conditions and for overall flight are summarized in

table VII for each airline. These data were obtained from the 1-minute

airspeed readings of the VGH records. The differences among the average

speeds for the three airlines are generally less than about 5 knots and,

thus, indicate rather consistent airspeed practices for the three opera-

tions. The average airspeeds were roughly 215 knots during climb,

265 knots during cruise, and 240 knots during descent.

The average indicated airspeeds in rough and smooth air for each

flight condition are given in table VIII. For this evaluation, rough

air was defined as those portions of flight during which accelerations

larger than about ±0.1g were experienced. In general, the results in

the table show little difference in the average airspeeds during flight

in rough and smooth air for the cruise condition. For the climb and

descent conditions, however, the results indicate lower speeds in rough

air than in smooth air.

Table IX summarizes the average indicated airspeeds for flight in

rough and smooth air by 5,000-foot-altitude intervals. For airlines A

and C the average speeds in rough air are generally slightly lower than

the speeds in smooth air, whereas the reverse is indicated for airline B.
The reason for this difference is not known.

As mentioned previously the airspeeds shown in table IX for flight

in rough air are based on the flight time during which accelerations

larger than ±0.1g accelerations were experienced. Thus, it may appear

that the airspeeds are unduly biased by relatively large amounts of

light turbulence encountered and for which airspeed reductions were not

necessary. Examination of the airspeed-acceleration data indicated,

however, that the larger accelerations generally occurred at the rough

airspeeds shown in table IX and that significant airspeed reductions

were not usually accomplished prior to encountering heavy turbulence.

The airspeeds given in table IX for flight in rough and smooth

air at the various altitude intervals are plotted in figure 25. The
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placard normal operating limit speed VNO and the placard never-exceed

speed VNE are also shown in the figure. The results show that the

average indicated operating speeds increase with altitude up to about

15,000 feet and decrease above this altitude. In general, the margins

between the average speeds and the placardspeeds decrease with increasing
altitude.

Results pertaining to speeds in excess of the placard VNO and VNE

speeds are summarized in table X. The table gives the percent of the

total flight time flown at speeds in excess of VNO and VNE and the

percent of the flight on which the placard speeds were exceeded in each

flight condition. Results are given for airlines A and B separately and

also for the combined data samples from the two airlines.

Comparison of the results in table X for the two airlines indicates

that the operating practices as regards maximum speeds were similar for

the two operations. In each case, approximately 1 percent of the flight

time was at speeds in excess of VNO (or MNO ) and about 0.006 percent

of the time was in excess of VNE (or MNE ). The results also indicate

that the overspeeding occurred primarily in descent, where speeds above

VNO were recorded on about 25 percent of the flights. More detailed

analysis of the data has shown that th_ overspeeds are not associated

with any particular altitude but rather occur throughout the operating

altitude range. The frequency of exceeding placard speeds is higher _

for the present airplane than for past plston-engine airplanes. However,

the percentage of the overspeed is about the same as for several other

types of turbine-powered transports.

Landing Accelerations and Vertical Velocity

Landing accelerations.- The probability distributions of the landing

impact accelerations (initial positive value) evaluated from VGH records

are given in figure 26 for the three'airllnes. A band representing the

limits of the landing-impact probability distributions based on a total

of 3,_62 landings of four 4-engine piston airplanes is also included in

the figure for purposes of comparison. The probability distributions

for airlines A and B are similar and both indicate a lower probability

of experiencing large impact acceleration than is shown by the results

for airline C. The results for airline C may not be representative of

extended operations, however, inasmuch as the data sample is small

(71 landings) and cover initial operations of the airplane by the airline.

In comparison with the results for piston engine airplanes, the present

results indicate a higher probability of experiencing large landing-

impact accelerations.
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Vertical velocities.- The probability distributions of vertical

velocity at landing (estimated from the impact acceleration data in

figure 26 by the method of ref. 6) are given in figure 27. The vertical-

velocity distributions for the three airlines have the same relative

position as the acceleration distributions in figure 26. The present

results indicate a somewhat higher probability of experiencing vertical

velocities of given values tha_ is shown by the results for the four-

Piston-engine airplane. It may be mentioned, however, that the vertical
velocities for the Electra are lower than the velocities for several

other types of turbine-powered transports.

CONCLUDING R_KB

An analysis of V-G and VGH data collected on several Lockheed Electra

airplanes during routine commercial airline operations has provided infor-

mation on a number of aspects concerning the operational experiences of

the airplane prior to the March 27, 1960 speed restrictions. The results

indicate that the accelerations caused by gusts and maneuvers are compar-

able to corresponding results for past plston-engine transport airplanes.

Accelerations due to oscillatory motions of the airplane (apparently

caused by autopilot or control system) appear to occur about one-tenth

as frequently as gust accelerations. For the period after March 27, 1960,

oscillatory accelerations having a period of about 6 seconds occasionally

occur and ma_ amplify the response of the airplane during flight in rough
air.

The airspeed operating practices in regard to rough air do not

appear to be different from past piston-engine transports. Placard

speeds were exceeded more frequently in the operation of the Electra

airplane than in operations involving piston transports. The over-

speeding , however, does not appear to be significantly more prevalent

on the Electra than on several other types of turbine-powered transports.

The landlng-impact accelerations appear to be somewhat higher, on

the average, than the accelerations for past operations of piston-engine

transports.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., February l, 1961.
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TABLE I.- SIZE OF VGH DATA SAMPLES

Data sample

Total flight hours available

Flight hours evaluated for:

Gust accelerations

Operational maneuvers

Check-flight maneuvers

Oscillatory accelerations

Airspeed and altitude distributions

Placard speed exceedances

Landings evaluated for:

Landlng-lmpact accelerations

l, 164.0

809.5
809.5
8_.6
474.6

49_.o
l, 164.0

584

B

893.o

575.4
579.4
589.6
798.4
575.4
893.o

441

c

191.8

155.7
o

o

o

155.7
0

71

TABLE II.- AVERAGE DISTANCES, TIME, AND

CRUISE ALTITUDES FOR FLIGHTS

Airline

A 94 0.19 431

B 52 .19 579

C 54 .19 455

Climb

Dis-
Time,

tance, hrs
miles

Crul se

Dis-
Time, Altitude,

tance, hrs ft
miles

1.11

.96

1.27

17, 317

17, 313

17,133

Descent

Dis-

tance,

miles

ll4

ll5 t

1!8

Time,

hrs

o.37

ToSal

w,

Dis- Time,

tance, hrs
miles

599 1.67

•36 546

•39 605

1.51

i, 85
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TABLE III.- PERCENT OF TOTAL TIME BY ALTITUDE

BRACKETS AND BY FLIGHT CONDITION

Altitude, ft

0 to 5,000

5,000 to i0,000

i0, 000 to 15,000

15, 000 to 20, 000

20, 000 to 25,000

Climb

Cruise

Descent

Percent of time for airline:

A

11.8

12.0

18.7

36.5

21.0

11.5

66.5

22.2

B

11.7

11.9

17.7

5O.2

8.5

12.5

63.7

24.0

C

12.8

10.6

22.0

41.9

12.7

i1.2

65.9

22.9
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TABLE VII.- AVERAGE INDICATED AIRSPEED

BY FLIGHT CONDITION

Indicated airspeed, knots, for -
Airline

Climb Cruise Descent Total

A

B

C

215

211

217

262

266

259

239

245

2_

251

254

249

TABLE VIII.- AVERAGE INDICATED AIRSPEEDS IN ROUGH

AND SMOOTH AIR BY FLIGHT CONDITIGN

Airline

m,

A

B

C

Indicated airspeed, knots, for-
Air

condition
Climb Cruise Descent Total

Rough

Smooth

ooth

ooth

201

217

212

211

2O7
218

2%
262

267
266

246
260

2O6
2_.8

229
249

211

24O

226
255

24_
255

225
252
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TABLE IX.- AVERAGE INDICATED AIRSPEED IN ROUGH

AND SMOOTH AIR BY ALTITUDE BRACKETS

Altitude,
ft

0 to 5,000

5,000 to lO, 000

i0,000 to 15,000

15,000 to 20, 000

20, 000 to 25,000

Average indicated airspeed, knots, for -

Airline A Airline B Airline C

Rough Smooth Rough Smooth Rough

178

252

271

260

255

203

257

276

e62

241

198

265

274

266

254

190

255

266

266

254

198

239

266

241

2_

Smooth

198

255

• 268

257

243
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TABLE X.- PERCENT TIME VN0 AND VNE EXCEEDED

IN CLIMB, CRUISE, AND DESCENT

Number flights .......

Number flight hours .....
Percent total time flown

above VN0 or MNO ........

Percent of flights VNO

(or%o):=eedea:
Overall ........
Climb ..........

Cruise .......... _.
Descent .........

Percent time flown above VNE

or M_ . • , . . • . . =_• •

Percent of flights VNE

(or exceeaea.
Overall ........

Climb ..........

Cruise ..........

Descent ...... , . .

Airline A

1.0

52.4
2.7
9.6

27.9

o.0o6

Airline B

o.7

24.0

0.7

23.4

o.oo7

Airlines A and B

z,329
2,057

o.87

28..5
1.8

.5.1
2.5.7

0.0064

1.10
0

o.13
0.93

1.20
0

o.17
i.o3

!.13
0

o._5
0.98

Y_

. % [,.

{
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Time, months

Figure 4.- Monthly distribution of VGH record hours for three airline

operations.
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Figure _.- Examples of oscillatory accelerations.
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I0-i
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0
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Figure ii. Positive and negative maneuver accelerations experienced per

mile of flight during check-flight operations.
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Figure 14.- Comparison of gust accelerations encountered per mile of

flight by three operators.
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Figure 19.- Comparisonof VGH and V-G gust accelerations for airline A.
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Figure 22.- Comparison of derived gust-velocity histories.
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Figure 23.- Distribution of derived gust velocities by altitude brackets

as a function of the cumulative frequency per mile.



91

10-6

V

I
]

Alti%ude, /%
0 to 5,000

5,000 to I0,000
i0,000 to 15,000
15,000 to 20,000
20,000 to 25,000

I
fl
J

-t
I

Oust ,elocity, Udt, f%/see

(b) Airline B.

Figure 23.- Concluded.
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Figure 24.- Comparison of gust velocities obtained from VGH and V-G data.
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Figure 27.- Probability curves of vertical velocity of landing impact for

the test airplane and four piston-englne transports.




